Lecture 5: Score and Fisher Information
Definition: Score function

\[S(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) \]

Consequently, the MLE is obtained from the score equation \(S(\theta) = 0 \)

Definition: Fisher Information

\[I(\theta) = -\frac{\partial^2}{\partial \theta^2} \log L(\theta) \]

Standard errors are computed from the Fisher Information: \(se(\hat{\theta}) \equiv I^{-0.5}(\theta) \)
Definition: Score function

\[S(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) \]

Consequently, the MLE is obtained from the score equation \(S(\theta) = 0 \)

Definition: Fisher Information

\[I(\theta) = -\frac{\partial^2}{\partial \theta^2} \log L(\theta) \]

Standard errors are computed from the Fisher Information: \(se(\hat{\theta}) \equiv I^{-0.5}(\theta) \)
Example 2.9

Let x_1, x_2, \ldots, x_n be an iid sample from $N(\theta, \sigma^2)$. Assume σ^2 known.

\[
\log L(\theta) = -\frac{1}{2\sigma^2} \sum (x_i - \theta)^2
\]

\[
S(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) = \frac{1}{\sigma^2} \sum (x_i - \theta)
\]

Score equation $S(\theta) = 0 \Rightarrow \hat{\theta} = \bar{x}$

Observed Fisher Information $I(\hat{\theta}) = -\frac{\partial^2}{\partial \theta^2} \log L(\hat{\theta}) = \frac{n}{\sigma^2}$

$\Rightarrow \text{se}(\hat{\theta}) = \sqrt{\frac{\sigma^2}{n}}$
Example 2.9

Let x_1, x_2, \ldots, x_n be an iid sample from $N(\theta, \sigma^2)$. Assume σ^2 known.

$$\log L(\theta) = -\frac{1}{2\sigma^2} \sum (x_i - \theta)^2$$

$$S(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) = \frac{1}{\sigma^2} \sum (x_i - \theta)$$

Score equation $S(\theta) = 0 \Rightarrow \hat{\theta} = \bar{x}$

Observed Fisher Information $I(\hat{\theta}) = -\frac{\partial^2}{\partial \theta^2} \log L(\hat{\theta}) = \frac{n}{\sigma^2}$

$\Rightarrow se(\hat{\theta}) = \sqrt{\frac{\sigma^2}{n}}$
Example 2.9

Let $x_1, x_2, ..., x_n$ be an iid sample from $N(\theta, \sigma^2)$. Assume σ^2 known.

$$
\log L(\theta) = -\frac{1}{2\sigma^2} \sum (x_i - \theta)^2
$$

$$
S(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) = \frac{1}{\sigma^2} \sum (x_i - \theta)
$$

Score equation $S(\theta) = 0 \Rightarrow \hat{\theta} = \bar{x}$

Observed Fisher Information $I(\hat{\theta}) = -\frac{\partial^2}{\partial \theta^2} \log L(\hat{\theta}) = \frac{n}{\sigma^2}$

$\Rightarrow se(\hat{\theta}) = \sqrt{\frac{\sigma^2}{n}}$
Multiparameter models: Example 3.7

Let \(x_1, x_2, \ldots, x_n \) be an iid sample from \(N(\mu, \sigma^2) \). Both \(\mu \) and \(\sigma^2 \) not known.

Score functions

\[
S_1(\mu, \sigma^2) = \frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum (x_i - \mu)
\]

\[
S_2(\mu, \sigma^2) = \frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum (x_i - \mu)^2
\]

The score equations \(S_1(\mu, \sigma^2) = 0 \) and \(S_2(\mu, \sigma^2) = 0 \) gives the MLE

\[
\hat{\mu} = \bar{x}
\]

\[
\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2
\]

The second derivatives give the observed Fisher Information matrix

\[
I(\mu, \sigma^2) = \begin{pmatrix}
\frac{n}{\sigma^2} & 0 \\
0 & \frac{n}{2(\sigma^2)^2}
\end{pmatrix}
\]
Let x_1, x_2, \ldots, x_n be an iid sample from $N(\mu, \sigma^2)$. Both μ and σ^2 not known. Score functions

\[S_1(\mu, \sigma^2) = \frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum (x_i - \mu) \]

\[S_2(\mu, \sigma^2) = \frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum (x_i - \mu)^2 \]

The score equations $S_1(\mu, \sigma^2) = 0$ and $S_2(\mu, \sigma^2) = 0$ gives the MLE

\[\hat{\mu} = \bar{x} \]

\[\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 \]

The second derivatives give the observed Fisher Information matrix

\[I(\mu, \sigma^2) = \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2(\sigma^2)^2} \end{pmatrix} \]
Multiparameter models: Example 3.7

Let $x_1, x_2, ..., x_n$ be an iid sample from $N(\mu, \sigma^2)$. Both μ and σ^2 not known.

Score functions

\[S_1(\mu, \sigma^2) = \frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum (x_i - \mu) \]

\[S_2(\mu, \sigma^2) = \frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum (x_i - \mu)^2 \]

The score equations $S_1(\mu, \sigma^2) = 0$ and $S_2(\mu, \sigma^2) = 0$ gives the MLE

\[\hat{\mu} = \bar{x} \]

\[\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 \]

The second derivatives give the observed Fisher Information matrix

\[I(\mu, \sigma^2) = \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2(\sigma^2)^2} \end{pmatrix} \]
Multiparameter models: Example 3.7

Let x_1, x_2, \ldots, x_n be an iid sample from $N(\mu, \sigma^2)$. Both μ and σ^2 not known.

Score functions

\[S_1(\mu, \sigma^2) = \frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum (x_i - \mu) \]

\[S_2(\mu, \sigma^2) = \frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum (x_i - \mu)^2 \]

The score equations $S_1(\mu, \sigma^2) = 0$ and $S_2(\mu, \sigma^2) = 0$ gives the MLE

\[\hat{\mu} = \bar{x} \]

\[\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 \]

The second derivatives give the observed Fisher Information matrix

\[I(\mu, \sigma^2) = \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2(\sigma^2)^2} \end{pmatrix} \]