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Development of variance component algorithms in genetics has previously mainly focused on animal
breeding models or problems in human genetics with a simple data structure. We study alternative
methods for constrained likelihood maximization in quantitative trait loci (QTL) analysis for large com-
plex pedigrees. We apply a forward selection scheme to include several QTL and interaction effects, as
well as polygenic effects, with up to five variance components in the model. We show that the imple-
TL mapping
EML
ariance component estimation
verage information matrix
orward selection

mented active set and primal-dual schemes result in accurate solutions and that they are robust. In
terms of computational speed, a comparison of two approaches for approximating the Hessian of the
log-likelihood shows that the method using an average information matrix is the method of choice for
the five-dimensional problem. The active set method, with the average information method for Hessian
computation, exhibits the fastest convergence with an average of 20 iterations per tested position, where

mpon
essian approximation
ctive set
rimal-dual method

the change in variance co

. Introduction

Quantitative trait loci (QTL) are regions on the genome that
ffect traits measured on a continuous scale. These traits are
ffected both by several genetic regions and by environmental fac-
ors. QTL detection has been a major field of research for several
ecades (Lynch and Walsh, 1998), where experimental data has
hown to be of great importance and has given unique insights to
he genetic architecture of quantitative traits (Carlborg and Haley,
004).

Experimental data, resulting in high power for QTL detection,
ay be derived by crossing two breeds that are expected to differ

enetically. The relationship between trait values and genotypes
an be analyzed after two generations of controlled breeding. These
xperiments are referred to as F2 intercrosses. A standard statistical
ool for analyzing F2 intercrosses is the simple regression model,
hich assumes no genetic variation between individuals of the

ame breed (Haley and Knott, 1992; Broman, 1997; Ljungberg et
l., 2002). However, there is often some genetic variation within

he two breeds, and this variation may be modeled as a random
ffect in a more advanced variance component model (Rönnegård
nd Carlborg, 2007; Perez-Enciso and Varona, 2000).

∗ Corresponding author. Tel.: +46 241 30034.
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ents <0.0001 was used as convergence criterion.
© 2010 Elsevier Ltd. All rights reserved.

In a variance component QTL analysis, all the founders of the F2
intercross are assumed to be unrelated with genes randomly sam-
pled from an outbred population. QTL mapping based on a variance
component model is computationally demanding. The computa-
tional procedure consists of an inner problem and an outer problem.
In the inner problem a variance component model is fitted at a
given position in the genome. The value of the likelihood ratio
statistic is calculated for this model and is subsequently used in
the outer problem. The outer problem consists of finding the posi-
tion, among all tested positions, with highest likelihood ratio value.
Hence, the dimensionality of the inner problem is equal to the num-
ber of variance components to be estimated, whereas the number
of dimensions in the outer problem is given by the number of QTL
that we wish to fit simultaneously.

Calculation of the likelihood ratio statistic requires variance
component estimation, where restricted maximum likelihood
(REML) estimation is used to ensure unbiased estimates of vari-
ance components. Variance component estimation consists of a
non-linear optimization problem where the computation of the
objective function and its derivative is rather costly. Fast variance
component estimation programs developed for animal breeding
problems (e.g. ASReml (Gilmour et al., 2002) and DMU (Madsen
and Jensen., 2008)) are often used in QTL analysis (e.g. Rowe et

al., 2009). These variance component estimation programs have
been developed to analyze large data sets (≈ 106 observations) and
to compare a moderate number of models (usually < 10). In QTL
analysis, however, the size of the data sets are moderate (≈ 103

observations), whereas the number of models compared are large

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:kateryna.mishchenko@mdh.se
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usually > 1000). Consequently, the variance component estima-
ion program developed for QTL analysis needs to be robust so that
he algorithm converges for all fitted models. Once the robust-
ess has been verified, further efforts can be made to reduce the
omputational cost of the calculations.

Variance component estimation algorithms have also been
eveloped for QTL analysis in human pedigrees consisting of inde-
endent families (for instance in the SOLAR software (Almasy and
langero, 1998)), where the size of each family is small. This gives a
lock-diagonal structure in the variance component model which
esults in significant simplifications in the computational algo-
ithms and convergence problems does not seem to be an issue.
n the current paper, we focus on large complex pedigrees that do
ot have this simple structure.

A major problem in variance component estimation is that the
arameter space is constrained (since variances are > 0). This fact
eeds to be accounted for by employing established techniques for
onstrained optimization (e.g. primal-dual and active set methods
Forsgren and Gill, 1998)). Convergence for variance components
n, or close to, the parameter boundary may otherwise not be
uaranteed. A commonly used algorithm for variance component
stimation in animal breeding is the average information REML
Johnson and Thompson, 1995), which has been implemented in
he ASReml and DMU software (Gilmour et al., 2002; Madsen and
ensen., 2008). The focus has been on speed rather than estimat-
ng parameters close to, or on, the boundary in this algorithm,
ince it is primarily developed for animal breeding applications.
or parameter estimates on, or outside, the parameter boundary
MU combines average information REML with an expectation-
aximization (EM) algorithm to enable convergence within the

arameter space. ASReml does not allow zero variances and sets
lower limit to the variance components equal to a small pos-

tive value. To our knowledge, these methods do not guarantee
onvergence within the parameter space.

Previously we have investigated the possibilities of using active
et and primal-dual methods for the simplest possible model with
wo variance components (Mishchenko et al., 2008), a QTL vari-
nce and a residual variance, where the given correlation structure
or the QTL variance is low rank or can be approximated by a low
ank correlation structure (Rönnegård et al., 2007). Fast compu-
ation of projection matrices and matrix inversions has also been
erived for the two variance component problem (Mishchenko and
eytcheva., 2009).

In QTL analysis, it is also common to include random poly-
enic effects as well as QTL effects (Lynch and Walsh, 1998). The
orrelation structure for polygenic effects (i.e. the additive relation-
hip matrix) is full rank and adds an additional complexity to the
ariance component estimation problem. Furthermore, possible
nteraction effects between QTL (i.e. epistasis) at several positions
n the genome is important to include in the analysis (Carlborg
nd Haley, 2004). Hence, problems with more than two dimen-
ions for the inner problem needs to be studied and will put higher
equirements on the computational robustness for the variance
omponent estimation algorithm.

The aim of the current paper is to investigate optimization
echniques for the inner problem based on the active set and
rimal-dual algorithms for constraint optimization, and we apply
hese schemes for QTL mapping models with 3–5 variance com-
onent problems. We wish to find a scheme which is numerically
obust and efficient. Moreover, the performance of the schemes
sing different methods for approximating the Hessian of the log-
ikelihood are compared. The methods are tested on published data
Carlborg et al., 2006), where the previous analysis was based on
regression model (Haley and Knott, 1992) assuming no within-
reed variation. We briefly discuss differences and similarities
etween our results and these earlier analyses.
gy and Chemistry 34 (2010) 34–41 35

2. The restricted maximum likelihood approach

In this section, we consider models where a one-dimensional
genome scan is performed for estimating 3–5 variance components.
We start by considering a model of a single QTL and additional poly-
genic effects. Polygenic effects are the combined effects of many
genes at different loci each having a small effect (Lynch and Walsh,
1998), whereas a QTL effect is the effect of a restricted part of the
genome. The correlation structure for polygenic effects is given
by the additive relationship matrix and is calculated from pedigree
information, whereas the correlation structure for the QTL effect is
given by the identity-by-descent (IBD) matrix. Elements of the IBD
matrix are estimated from pedigree and marker information (Lynch
and Walsh, 1998).

2.1. A single QTL and polygenic effects (3D-SCAN)

Variance component analysis for single QTL and polygenic
effects is based on a general linear mixed model,

y = Xb + Z1u1 + Zaa + e, (1)

where y is a vector of n individual phenotypes of a normally dis-
tributed trait, X is an n × nf design matrix for fixed effects, Z1 is an
n × nr design matrix for random effects, b is a vector of nf unknown
fixed effects, u1 is a vector of nr unknown random effects for an
individual QTL, Za is a n × na design matrix for additional polygenic
effects, a is a vector of na random polygenic effects, and e is a vector
of n residuals of random effects. All random effects are assumed to
be normally distributed.

For the QTL analysis setting we also assume that the entries in
e are identically and independently distributed and that there is a
single observation for each individual. Let �1 be the IBD matrix and
A the additive relationship matrix, then the variance–covariance
matrix for (1) is

V = �1�2
1 + A�2

a + I�2
e , (2)

where �2
1 is the variance of the random QTL effect, �2

a is the variance
of polygenic effects and �2

e is the residual variance.
In REML estimation, the parameters �2

1 , �2
a , �2

e are obtained as
maximizers of the restricted likelihood function l of the observed
data y. This is done by minimizing the restricted log-likelihood
function L(�) associated with (1),

L = −2 ln(l) = C + ln(det(V)) + ln(det(XT V−1X)) + yT Py. (3)

Here, C is normalizing constant, � is the vector of variance com-
ponents and the projection matrix P is defined by

P = V−1 − V−1X(XT V−1X)
−1

XT V−1. (4)

In summary, we solve the inner problem, i.e. determine the esti-
mates of �2

1 , �2
a , �2

e , by solving the optimization problem:

min L(�) (5)

s.t.

�1 ≥ 0, �2 ≥ 0, �3 > 0. (6)

Below, we use the notation � = (�2
1 , �2

a , �2
e ) = (�1, �2, �3). To

determine the main QTL and its effect we need to solve the outer
problem and search for the best model fit over the genome. The
position �0 with the best likelihood value is the most likely position
of the main QTL.
2.2. Forward selection for an additional QTL (4D-SCAN)

To solve the problem of finding several QTL, a simulta-
neous search for them should in principal be performed. For
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xample, when searching of two QTLs, the outer problem is a
wo-dimensional global optimization problem. This drastically
ncreases the computational complexity, since the outer problem

ust be solved in a hypercube with dimensionality defined by
he number of QTL under consideration. An efficient approach for
etecting multiple QTLs in a single, multi-dimensional search has
een developed for the standard least-squares model (Ljungberg et
l., 2004, 2005). There, a modified version of the global optimiza-
ion scheme DIRECT and a hybrid global–local approach were used
o solve the outer problem.

In practice, a technique based on forward selection has tradi-
ionally been widely used for searching for several QTLs. Here, a
ne-dimensional search for the position of the main QTL is first
erformed, and the computed effect of the QTL is subsequently

ncluded in the model. Using the extended model, a new one-
imensional search for another QTL is made. An attractive feature
f this technique is that only one-dimensional outer problems need
o be solved, and the computational complexity is normally much
maller than if a multi-dimensional simultaneous search is per-
ormed. However, it is not clear how accurate this technique is for
eneral models. For example, it has been shown, in Carlborg and
aley (2004) that a forward selection scheme can be ineffective in
etecting interacting QTL. Hence, the results from forward selection
nalysis should be used with some care.

In the current paper, we postpone the introduction of simultane-
us search for several QTL to future research, and we focus on using
he forward selection procedure which gives a one-dimensional
uter problem. In this case, an additional random QTL effect u2 is
dded to the model (1):

= Xb + Z1u1 + Zaa + Z2u2 + e, (7)

here the corresponding variance–covariance matrix of y now is

= �1�2
1 + A�2

a + �2�2
2 + I�2

e . (8)

Here, �2 is the IBD-matrix for the putative QTL at position �0
nd �2

2 is the variance of u2.
The estimates for the forward selection model (7) are obtained

s minimizers of the problem:

in L(�1, �2, �3, �4) (9)

.t.

1 ≥ 0, �2 ≥ 0, �3 > 0, �4 ≥ 0. (10)

This is a four-dimensional optimization problem where � =
�2

1 , �2
a , �2

e , �2
2 ) = (�1, �2, �3, �4).

.3. Forward selection for an additional QTL and interaction
ffects (5D-SCAN)

An interaction effect between the two QTL in (7) can be added
o model pair-wise epistatic interaction between them. The corre-
ponding models are

= Xb + Z12u12 + Z1u1 + Z2u2 + Zaa + e, (11)

here the variance–covariance matrix of y is given by

= �1�2
1 + A�2

a + �2�2
2 + �12�2

12 + I�2
e , (12)

nd �12 is calculated as the Hadamard product between �2 and
1 (Stern et al., 1996; Rönnegård et al., 2008). A large difference

n the likelihood ratio of models (7) and (11) suggests that the QTL
t positions �0 and � do not act additively and that the interaction

ffect between the QTL is significant.

The minimization problem for finding the estimates
�2

1 , �2
a , �2

e , �2
3 , �2

12) = (�1, �2, �3, �4, �5) is now five-dimensional:

in L(�1, �2, �3, �4, �5) (13)
gy and Chemistry 34 (2010) 34–41

s.t.

�1 ≥ 0, �2 ≥ 0, �3 > 0, �4 ≥ 0, �5 ≥ 0. (14)

3. Optimization methods for the inner problem

In this section, we review two local optimization schemes for
constrained problems; the active set and the primal-dual methods.
We also introduce three approaches for approximating the Hessian
of the log-likelihood.

Both the active set and primal-dual schemes are of Newton
type, and hence based on the ability to compute exact or approx-
imative derivatives of the objective function. The gradient of the
log-likelihood can be computed analytically as a function of the
matrices V and P, see e.g. Lynch and Walsh (1998):

∂L

∂�i
= tr(

∂V

∂�i
P) − yT P

∂V

∂�i
Py, i = 1, . . . , m. (15)

Here, m is the number of variance components in the model.
The Hessian can also be expressed using an analytical formula:

H(�i, �j) = −tr(
∂V

∂�i
P

∂V

∂�j
P) + 2yT P

∂V

∂�i
P

∂V

∂�j
Py, i, j = 1, . . . , m.

(16)

3.1. The active set method

We use the active set method described in Mishchenko et al.
(2008), given by

pk+1 = −N[NT · ∇2L(�k) · N]
−1 · NT∇L(�k),

�k+1 = �
k + ˛k · pk+1. (17)

The optimality condition is checked by computing the Lagrangian
multipliers � at the potential optimum �∗:

�k = AT
r ∇L(�∗), (18)

where Ar is right inverse of the matrix A.
We use a line search procedure where the current step ˛k is, if

needed, reduced so that the next point lies exactly on the relevant
constraint.

3.2. The primal-dual interior point method

The primal-dual method is also based on Newton’s method,
using both primal (computation of �) and dual (computation of the
Lagrangian multipliers �) steps. We employ the nonlinear primal-
dual method where the iterative scheme is given by

�k+1 = �k + ˛k��k, �k+1 = �k + ˛k	�k (19)

and current step (��k, 	�k) is determined as a solution of the
following system of equations:(

∇2L(�k) −A(�k)
T


k · A(�k) M(�k)

)
·
(

��k

	�k

)
= −

(
∇L(�k) − A(�k)

T · �k

M(�k) · �k − � · 1

)
(20)

where M(�k) is a diagonal matrix with the constraints m(�k) on the
diagonal, 
k is a diagonal matrix with the Lagrangian multipliers on
the diagonal, and A(�k) is a matrix of the gradients of constraints.

Since we have linear bound constraints, A(�) is constant, containing
only the values 1, 0 and −1.

In the algorithm, �0 is chosen as �0 = �0/m(�0), where �0
and m(�0) are given at the initial step and �k forms a decreas-
ing sequence (�k ≥ 0). The line search procedure is the same as for
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he active set method. Here, the condition �k ≥ 0 is checked and if
t does not hold we choose ˛k to fulfil it.

.3. Computation of the Hessian of the log-likelihood

The direct usage of (16) is costly, and it may be beneficial to
pproximate the true Hessian matrix by some entity which is
heaper to compute. In the average information REML method, the
essian is substituted by the average information matrix, which is

he average of the Hessian (16) and its expected value. The average
nformation matrix is given by

I(�i, �j) = yT P
∂V

∂�i
P

∂V

∂�j
Py i, j = 1, . . . , m. (21)

For two-dimensional optimization problems, corresponding to
single QTL without any additional effects, the average informa-

ion REML method (based on Newton iteration) has been shown to
e efficient for those cases when minimum was found inside the
easible region (Mishchenko et al., 2008).

We use three approaches for approximating the Hessian using:
verage information (Johnson and Thompson, 1995), BFGS, and
verage information–BFGS combined. BFGS is a numerical approx-
mation of the Hessian matrix (Nocedal and Wright, 1999) as
escribed below.

1) Average information: Here, we approximate the Hessian by the
average information matrix (21). For our problems, we have
m = 3, 4 and 5. Thus, the average information matrix is 3 × 3,
4 × 4 or 5 × 5.

2) BFGS with damping: Here, we use the BFGS updating technique
(Nocedal and Wright, 1999), including a damping parameter
� which is used to ensure that the Hessian approximation is
always positive definite, see Algorithm 1. We use two versions
of this approach: in the first implementation (BFGS), the initial
value of the approximated Hessian is set to the identity matrix
(H0 = I).
3) Average information–BFGS: Here, we use the average infor-
mation formula for computing the initial value (H0 = AI) and
otherwise use the BFGS algorithm as described in Algorithm 1.

lgorithm 1. Hessian updating by the damped BFGS formula.

able 1
tatistics based on the number of iterations performed by the different optimization sche

Method

Active set

AI a AI–BFGS a BFG

3D-SCAN
Max 
iter 32 60 23
Min 
iter 13 30 8
Mean 
iter 16.03 47.33 13.5
Std 
iter 2.07 5.47 4.2

4D-SCAN
Max 
iter 29 78 42
Min 
iter 13 49 9
Mean 
iter 17.04 64.97 16.4
Std 
iter 2.14 6.06 5.4

5D-SCAN
Max 
iter 51 98 60
Min 
iter 11 63 9
Mean 
iter 18.18 81.33 19.1
Std 
iter 4 6.65 6.2

a Hessian.
gy and Chemistry 34 (2010) 34–41 37

sk = �k − �k−1

yk = ∇L(�k) − ∇L(�k−1)
if
skT · yk ≥ 0.2 · skT · Hk−1 · sk (22)
then

�k = 1
else

�k = (0.8 · skT · Hk−1 · sk)/(skT · Hk−1 · sk − skT · yk)
end if
rk = �k · yk + (1 − �k) · Hk−1 · sk (23)

Hk = Hk−1 − Hk−1 · sk · skT · Hk−1

skT · Hk−1 · sk
+ rk · rkT

skT · rk
(24)

Note that the computational complexity for the BFGS update is
much smaller than the complexity for computing the average infor-
mation matrix. The convergence criterion used in all algorithms
was

∣∣�k − �k−1
∣∣< 10−4.

4. Numerical results

We use data from a selection experiment in chicken (Carlborg
et al., 2006). The number of observations is n = 767, and the fixed
effects are population mean and sex effect. The genome consists
of 20 chromosomes of lengths 50–410 cM. To perform the genome
scan, the IBD matrices are computed on a mesh with 5 cM step
length and the best model fit is found by an exhaustive search. The
5% genome-wide significance thresholds is 3.84 for model (1) and
5.99 for model (11), which are approximations given by George
et al. (2000). In Carlborg et al. (2006), a QTL with main effect was
found near the 85 cM position on chromosome 7 using a simple
regression model.

We perform the genome scan three times: the first search (3D-
SCAN) is applied using model (1) with polygenic effects, the second
(4D-SCAN) is applied to model (7), and in the final scan (5D-SCAN)
we evaluate model (11). When performing 3D-SCAN, we solve
the three-dimensional local optimization problems and detect the
position �0 for the main QTL. This result is used as input for 4D-
SCAN, where four-dimensional local optimization problems are
solved. Finally, in 5D-SCAN, five-dimensional optimization prob-
lems are solved.
We have verified that for each scan, all methods used produce
very similar log-likelihood values and variance components. Hence,
all tested schemes are reasonably robust and produce accurate
solutions. Below, we compare the performance of the methods and
also present a more detailed study of robustness (i.e. sensitivity to

mes for 3D-SCAN, 4D-SCAN and 5D-SCAN.

Primal-dual

S a AI a AI–BFGS a BFGS a

55 68 32
21 42 15

5 26.58 52.81 22.27
2 3.78 5.01 2.63

49 85 32
23 50 18

1 27.04 69.34 24.07
8 3.24 6.16 2.34

93 100 53
23 51 20

1 32.50 85.81 27.28
7 6.11 6.59 3.39
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Table 2
Cpu timing for 5D-SCAN (s).

Method

Active set Primal-dual

AI a AI–BFGS a BFGS a AI a AI–BFGS a BFGS a

Aver time per iter 1.057 1.037 1.034 1.056 1.036 1.034
Aver time 19.2 19.7 84.1 34.3 28.2 88.7

a Hessian.

F e shown as dotted vertical lines. The approximate 5% genome-wide significance threshold
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ig. 1. Likelihood ratio values for the three scans. Borders between chromosomes ar
s given by the dashed horizontal line.

roblem parameters such as the position in the genome and the
imensionality of the optimization problem).

The active set scheme, together with the average information
essian approximation results in few iterations and a small varia-

ion among positions (Table 1). For all schemes, the dependence on
he dimensionality of the optimization problem is small.

In Table 2, CPU timings for 5D-SCAN are presented as aver-
ge over all positions in the genome. We conclude that the active
et method for constraining the parameter space together with
n approximation using the average information matrix should be
sed for variance component QTL models with up to five variance
omponents.

The highest peak of the likelihood ratio curve for 3D-SCAN was
ound to be located at position 85 cM on chromosome 7 (Fig. 1),
hich is consistent with the earlier results using the least-squares
odel (Carlborg et al., 2006). The curve for 4D-SCAN, derived using

he forward selection model (7), is similar to the one for 3D-SCAN
ith the exception that the peak corresponding to the main QTL
s no longer present. The highest peak in the curve for 4D-SCAN is
ocated at 220 cM on chromosome 4. Hence, this is the location of
he potential second QTL when interaction effects are not included
n the model. Also note that, for these data, the highest peak using
7) is the second highest peak from the genome scan using model
Fig. 2. The number of iterations for 3D-SCAN as a function of the maximal value of
the log-likelihood.
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1) and that the differences in the top two graphs of Fig. 1 are small
part from the fact that the peak on chromosome 7 (which was
ncluded in the model of (7)) is not found in the middle graph of
ig. 1.

The highest peak in the likelihood ratio curve for 5D-SCAN is
ocated at 65 cM on chromosome 16. Hence, this is the location of
he potential second QTL when interaction effects are included in
he model. The large differences between 4D-SCAN and 5D-SCAN
re expected since large epistatic effects were found for these data
n Carlborg et al. (2006).

The number of iterations used increases for positions on the
enome with small likelihood ratios. Positions with small likeli-
ood ratios have either flat log-likelihood surfaces or QTL variance
omponents close to zero. This was also observed in our results
here the number of iterations increases as the maximal log-

ikelihood value decreases (Fig. 2 gives results for 3D-SCAN with
he active set + average information method).

. Summary

We present efficient and robust optimization schemes for solu-
ion of the REML problem for variance component estimation in
he setting of QTL analysis. We consider three important model
ettings, resulting in REML optimization problems of dimension
–5. The most robust and efficient scheme is the active set method
ombined with approximating the Hessian with the average infor-
ation matrix, and possibly updating this approximation during

he iterations using the BFGS procedure with damping. We also con-
ider using the primal-dual optimization method, but this scheme
s slightly less efficient, especially when it is taken into account that
linear system of equations must be solved using QR factorization
t each iteration.

Although the speed of the calculations has been of secondary
mportance in our study, it is essential the methods are fast enough
o perform full genome scans. In the Appendix we derive formulas
or increasing the computational speed and show how to compute
he inverse to the variance-covariance matrix using an algorithm
hich requires C1kn2 arithmetic operations, compared to C2n3

perations if a standard factorization is used.
The aim of our paper was to derive efficient and robust algo-

ithms for variance component based QTL analysis, but there are
lso some interesting similarities and differences between our
esults and those found by Carlborg et al. (2006). In the study of
arlborg et al. (2006) a regression model was used assuming no
ithin-breed variation. Using the same data they found a QTL net-
ork between chromosomes 1–4, 7 and 20. In our study, the main
eaks of model (1) are found on chromosomes 1–4, 7 and 16. Fur-
hermore, the QTL showing clearest interaction effects with the QTL
n chromosome 7 in our study is located on chromosome 16. These
ifferences may be explained by the differences in the assumptions
f the two QTL models.

The optimization methods presented produce accurate solu-
ions in a robust way, and using the schemes presented in our paper
nables the usage of more complex variance component models
or genetic analysis in a production setting. Using the proposed
ctive set scheme, it is possible to regularly solve REML optimiza-
ion problems with 2, 3, 4, or 5 variance components in about 20
terations. This was not possible earlier using the standard aver-
ge information-REML scheme, where convergence problems may
ccur (MacGregor, 2003). It could be argued, however, that con-

ergence problems for positions on the genome with estimates on
he boundary of the parameter space are not of interest, because
uch positions do not generally contain a QTL. This argument is not
atisfactory, since the reason for divergence can not be uniquely
dentified and the result can not be interpreted. General vari-
gy and Chemistry 34 (2010) 34–41 39

ance component software should not produce such non-conclusive
results.

Appendix A. Numerical algorithms for evaluating
derivatives of the log-likelihood

The efficiency of the solution of the inner problem depends both
on the efficiency of the optimization scheme as such, i.e. the number
of iterations required, and the efficiency of the algorithms used for
computing the derivatives used inside the optimization loop. To
optimize the overall procedure, we consider efficient algorithms
for the derivative computations.

The algorithms used for the numerical linear algebra operations
needed for computing the gradient and Hessian approximation
should be adapted to the formulation of the problem, the prop-
erties of the covariance matrices, and the number of variance
components included in the model. In Johnson and Thompson
(1995); Callanan and Harville (1991), efficient approaches have
been developed for the case when the problem is formulated and
solved in terms of mixed model equations. These methods can-
not be utilized for QTL analysis problems, since the IBD matrices
are normally singular. Efficient algorithms for computing the log-
likelihood derivatives for simple QTL models with two variance
components, including a singular IBD matrix, were developed in
Mishchenko et al. (2007); Mishchenko and Neytcheva. (2009). In
this case, the variance–covariance matrix V is given by

V = �1�1 + I�2, (25)

where �1 is a positive semi-definite IBD matrix of size n × n and
�1, �2 are the variances of the random QTL effects and the residual.

The main observation leading to the methods developed in
Mishchenko et al. (2007); Mishchenko and Neytcheva. (2009) is
that the derivatives of the log-likelihood are given by expressions
that include V−1. Thus, a factorization of V as a product of constant
matrices, or matrices that can be easily updated, can potentially be
used to reduce the cost of computing the log-likelihood derivatives.

In Mishchenko et al. (2007), the specific structure of the IBD
matrix was used in two ways. First, the case when the IBD matrix
is given explicitly as a product of low rank matrices,

�1 = 1/2�̃�̃T , (26)

was considered. Here, �̃ is a rectangular matrix of size n × m, m �
n. In Rönnegård and Carlborg (2007), it has been shown that at
locations in the genome where complete genetic information is
available, a representation like (26) can always be determined.
Also, the rank of the IBD matrix as such locations depends only
on the size of base population. The case when the genetic informa-
tion is not fully complete was also considered. For such problems
the IBD matrix can normally still be well approximated by a low-
rank matrix. To compute such an approximative representation, a
truncated spectral decomposition was used, where

�1 ∼= Wt
tW
T
t . (27)

Here, Wt is the truncated matrix of eigenvectors of �1 of size n × k,
k < n, corresponding to k largest eigenvalues forming the diagonal
of the truncated matrix of eigenvalues 
t .

The factorizations (26) and (27) were subsequently used to
compute the inverse of the variance-covariance matrix (25) by
employing the Woodbury formula. The projection matrix (4) was
computed and used for the computations of the factors involved in

the formulas for the gradient and the average information matrix.

In Mishchenko and Neytcheva. (2009), an alternate algorithm
for the case when the IBD matrices are given in general form was
presented. There, the spectral decomposition of the IBD matrices
was also used, but neither V−1 nor P were computed explicitly.
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nstead, the action of P, i.e. Py, was computed directly by using a
actorization of the variance-covariance matrix given by

= W · D · WT , (28)

= 
�1 + I�2, (29)

here 
 and W are the diagonal matrix of eigenvalues and the
rthogonal matrix of eigenvectors of �1. In the algorithm, the fac-
orization (28) is subsequently used to compute the action of V and P
y solving systems of equations with multiple right-hand sides. As a
esult of the special structure of the factorization (28) and the pres-
nce of constant factors when forming Py, the algorithm developed
n Mishchenko and Neytcheva. (2009) in general has a lower com-
utational complexity that the method developed in Mishchenko et
l. (2007). Moreover, it was shown that the most efficient method
or computing the derivatives of the log-likelihood is to combine
he idea of approximation of the IBD matrices using truncated spec-
ral decomposition and direct evaluation of the action of P without
orming V−1 and P. The method has a smaller computational com-
lexity already if the rank of the approximated IBD matrix in (27)

s reduced by 20%. Finally, the trace computations occurring in the
ormulas for the derivatives were simplified by utilizing the eigen-
alues of the inverse of the variance-covariance matrices in (28).

The advantage of the factorization (28) combined with solving a
ystem of equations with multiple right hand sides can be fully uti-
ized only for models where the variance–covariance matrix has the
imple form (25). However, the idea of factorizing the IBD matrix
nto a product of a matrices of low rank can still be utilized for

odels where the matrix V has a more complicated structure, like
he models that have been introduced earlier in the paper. Below,
e present some generalizations of the methods mentioned above
ethods to two cases where the components in the matrix V have

pecific structure.

.1. A model with polygenic effects

For problem (5), the variance–covariance matrix V is the sum
f three terms, V = �1�1 + A�2 + I�3, where �1 is a positive semi-
efinite IBD matrix and A is a positive definite matrix of polygenic
ffects. In this case, the matrix A−1 is also explicitly known.

Straight-forward algorithms for computing the log-likelihood
an be based on computing a factorization, e.g. the Cholesky fac-
orization, of the matrix V in each iteration. The factorization can
lso be used for computing the entries of (15) and (21) explicitly.
his corresponds to computing P, Py, �1Py, APy according to the
lgorithm developed in Mishchenko and Neytcheva. (2009). The
emaining terms, tr(P),tr(�1P) and tr(AP) are computed by explicit
atrix–matrix multiplications and trace computations. An alter-

ative is to compute the spectral decomposition of V, which will
lightly simplify the trace computations since the eigenvalues of V
an be used for computing the trace of V−1. However, using this
ype of approach is computationally demanding. The factorization
f V in each iteration has complexity Cn3, and the computation of P
nvolves matrix–matrix multiplications which are also of the same
omplexity. Moreover, the advantage of knowing the inverse of A
xplicitly is not utilized.

We now consider an alternative scheme which reduces the costs
f computing (15) and (21). Here, we use the matrix A−1 explicitly,
nd we exploit a factorization of V−1 based on the spectral decom-
osition described in Mishchenko et al. (2007). The algorithm is
escribed in detail in (Mishchenko and Neytcheva., 2009, Section

).

We start with the spectral decomposition of �1�1 + I�2, which
ives

= WDWT + A�3, (30)
gy and Chemistry 34 (2010) 34–41

where W and D are defined above. Then, we exploit the Woodbury
formula for computing the inverse of V,

V−1 = �−1
3 A−1 − �−2

3 A−1W[D−1 + �−1
3 WT A−1W]

−1
WT A−1. (31)

Note that, despite the fact that A−1 is known and the terms
WT A−1W and WT A−1 are constant and should be computed only
once in (31), the matrix [D−1 + �−1

3 WT A−1W] of size n × n still
needs to be inverted (or the correspondent system of equations
should be solved) in each iteration in the optimization loop, due to
the presence of the matrix D which depends on �1 and �2. So, the
efficiency of the procedure for computing V−1 depends on how we
solve the following system of equations with multiple right-hand
sides:

[D−1 + �−1
3 WT A−1W]x = b, (32)

where x is an unknown matrix and b is known. Here, several pos-
sibilities can be considered. We suggest to employ the truncated
spectral decomposition of the matrix �1. Here, V and V−1 can be
written as

V ∼= WtDtW
T
t + A�3, (33)

V−1 ∼= �−1
3 A−1 − �−2

3 A−1Wt[D−1
t + �−1

3 WT
t A−1Wt]

−1
WT

t A−1, (34)

where Wt is the truncated matrix of eigenvectors of �1 and Dt =

t�1 + It�2.

By employing (32), we arrive at a smaller system:

[D−1
t + �−1

3 WT
t A−1Wt]x = b. (35)

If k � n, solving this system, using e.g. Cholesky factorization, is
significantly cheaper than solving (32).

In summary, the procedure for computing the approximate
inverse of V−1 expressed by formula (35) is:

(1) Compute Ã = A−1 · Wt and Â = WT
t · Ã.

(2) Compute D−1
t + �−1

3 Ã.
(3) Solve the system of equations with multiple right-hand sides:

[D−1
t + �−1

3 Â] · E = Ã, (36)

where E is a matrix of size n × k.
(4) Compute Ã · E.
(5) Compute �−1

3 A−1 − �−2
3 Ã · E.

Using this algorithm, the computational complexity for evalu-
ating V−1 in each iteration is 2n2k + 4nk2 + 1/3k3, plus n3 + 2n2k
for the spectral decomposition and computing the product A−1Wt ,
which is done once at the start of the whole computational proce-
dure.

The computations of the matrix P is done according to the
method described in Section 3.2 of Mishchenko and Neytcheva.
(2009). The only modification needed is that the factor M = V−1 · X
should be computed directly as a matrix–matrix product or as a
product of V−1 presented in (33), depending on size k of matrix Wt .

Since the matrix P is computed explicitly, tr(P) is easily obtained.
tr(PA) is computed using the representation (4) and V−1, using
formula (34):

tr(AP) = tr(A · V−1) − tr(A · V−1X(XT V−1X)
−1

XT V−1). (37)

The fist term in (37) is

tr(A · V−1) = tr(�−1
3 I − �−2

3 Wt · E), (38)
where E is computed as a solution of equations according to (36).
The second term of (37) is computed multiplying A by V−1X ,

and then by multiplying the result by (XT V−1X)
−1

XT V−1. Here,
(XT V−1X)

−1
XT V−1 and V−1X were computed already in the compu-

tation of P and can be reused. The total computational complexity
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or the trace is of order 4n2r, where r ≡ nf is the number of columns
n X.

For the computation of tr(�1 · P) we again use (4) and (34). We
tart with computing the matrix-matrix product �1 · V−1 and com-
ute its trace. The second term is computed by performing the
atrix-matrix multiplication �1V−1X and then multiplying the

esult by (XT V−1X)
−1

XT V−1. The computational complexity is again
f order of 4n2r.

The complete algorithm for the model with a single QTL and
olygenic effects is given below:

lgorithm 2. Computation of gradient DL and average informa-
ion matrix AI.

NITIALIZATION
. Compute factors W, 
 for spectral decomposition of matrix �1:

1 = W
WT .
. Compute factors Wt, Dt for truncated spectral decomposition of matrix

1�1 + I�2: �1�1 + I�2 ∼= WtDtWT
t .

. Compute factors A−1Wt and WT
t · A−1Wt .

TERATION LOOP
. Compute Ṽ−1 using formula (34). 5. Compute P
. Compute Py, �1Py, APy directly as matrix–vector products.
. Compute PAPy and PPy.
. Compute tr(P), tr(AP).

. Compute the gradient DL = −

(
tr(PA) − (Py)T · APy

tr(P) − (Py)T Py

tr(PB) − (Py)T BPy

)
.

0. Compute the average information matrix

I =

(
(P�1Py)T · �1Py (P�1Py)T · (Py) (P�1Py)T �1Py

(P�1Py)T · (Py) (PPy)T · (Py) (PPy)T �1Py

(P�1Py)T Py (PAPy)T Py (PAPy)T APy

)
.

The efficiency of the approach described above depends on the
runcation index k. When the IBD matrix �1 can be well approxi-

ated by a low-rank matrix, the approach based on the truncated
pectral decomposition will be efficient.

Additionally, we point out that the cases when �3 is equal or
lose to zero should be considered separately and the whole com-
utational procedure is altered due to more simple structure of the
ariance–covariance matrix V.

eferences

lmasy, L., Blangero, J., 1998. Multipoint quantitative trait linkage analysis in general

pedigrees. American Journal of Human Genetics 62, 1198–1211.

roman, K.W., 1997. Identifying quantitative trait loci in experimental crosses. Ph.D.
Thesis.

allanan, T.P., Harville, D.A., 1991. Some new algorithms for computing restricted
maximum likelihood estimates of variance components. Journal of Statistical
Computation and Simulation 38, 239–259.
gy and Chemistry 34 (2010) 34–41 41

Carlborg, Ö., Haley, C.S., 2004. Epistasis: too often neglected in complex trait studies?
Nature Reviews Genetics 5, 618–625.

Carlborg, Ö., Jacobsson, L., Åhgren, P., Siegel, P., Andersson, L., 2006. Epistatsis and
the release of genetic variation during long-term selection. Nature Genetics 38,
418–420.

Forsgren, Anders., Gill, P.E., 1998. Primal-dual interior methods for nonconvex non-
linear programming. SIAM Journal on Optimization 8, 1132–1152.

George, A.W., Visscher, P.M., Haley, C.S., 2000. Mapping quantitative trait loci in
complex pedigrees: a two-step variance component approach. Genetics 156,
2081–2092.

Gilmour, A.R., Gogel, B.J., Cullis, B.R., Welham, S.J., Thompson, R., 2002. Asreml User
Guide. VSN International Ltd., UK.

Haley, C.S., Knott, S.A., 1992. A simple regression method for mapping quantitative
trait loci in line crosses using flanking markers. Heredity 69, 315–324.

Johnson, D.L., Thompson, R., 1995. Restricted maximum likelihood estima-
tion of variance components for univariate animal models using sparse
matrix techniques and average information. Journal of Dairy Science 8 (2),
449–456.

Ljungberg, K., Holmgren, S., Carlborg, Ö., 2002. Efficient algorithms for quanti-
tative trait loci mapping problems. Journal of Computational Biology 9 (6),
793–804.

Ljungberg, K., Holmgren, S., Carlborg, Ö., 2004. Simultaneous search for multiple
QTL using the global optimization algorithm DIRECT. Bioinformatics 20, 1887–
1895.

Ljungberg, K., Mishchenko, K., Holmgren, S., 2005. Using DIRECT for a multidi-
mensional global optimization problem arising during genetic mapping of
quantitative traits. Submitted. Alo available as Technical Report 2005-035. IT,
Uppsala University.

Lynch, M., Walsh, B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer
Associates, Inc.

MacGregor, S., 2003. Genetic linkage mapping in complex pedigrees. Ph.D. Thesis.
Madsen, P., Jensen, J., 2008. An User’s Guide to DMU: A Package for Analysing Mul-

tivariate Mixed Models. University of Aarhus, Aarhus, Denmark.
Mishchenko, K., Holmgren, S., Rönnegård, L., 2008. Newton-type methods for REML

estimation in genetic analysis of quantitative traits. Journal of Computational
Methods in Sciences and Engineering 8, 53–67.

Mishchenko, K., Neytcheva, M., 2009. New algorithms for evaluating the log-
likelihood function derivatives in the AI-REML method. Communications in
Statistics 38, 1348–1364.

Mishchenko, K., Holmgren, S., Rönnegård, L., 2007. Efficient implementation of the
AI-REML iteration for variance component QTL analysis. Technical Report 2007-
4. Research Report Mälardalen University.

Nocedal, J., Wright, S.J., 1999. Numerical optimization. Springer Verlag, New York.
Perez-Enciso, M., Varona, L., 2000. Quantitative trait loci mapping in f2 crosses

between outbred lines. Genetics 155, 391–405.
Rönnegård, L., Carlborg, Ö., 2007. Separation of base allele and sampling term effects

gives new insights in variance component QTL analysis. BMC Genetics 8 (1).
Rönnegård, L., Mishchenko, K., Holmgren, S., Carlborg, O., 2007. Increasing the

efficiency of variance component quantitative trait loci analysis by using
reduced-rank identity-by-descent matrices. Genetics 176, 1935–1938.

Rönnegård, L., Pong-Wong, R., Carlborg, Ö., 2008. Defining the assumptions under-
lying modeling of epistatic QTL using variance component methods. Journal of
Heredity 99, 421–425.

Rowe, S.J., Pong-Wong, R., Haley, C.S., Knott, S.A., de Koning, D.J., 2009. Detecting par-

ent of origin and dominant qtl in a two-generation commercial poultry pedigree
using variance component methodology. Genetics Selection Evolution 41, 6.

Stern, M.P., Duggirala, R., Mitchell, B.D., Reinhart, L.J., Sivakumar, S., Shipman, P.A.,
Uresandi, O.C., Benavides, E., Blangero, J., O’Connell, P.P., 1996. Evidence for link-
age of regions on chromosome 6 and 11 to plasma glucose concentrations in
Mexican Americans. Genome Research 6, 724–734.


	Assessing a multiple QTL search using the variance component model
	Introduction
	The restricted maximum likelihood approach
	A single QTL and polygenic effects (3D-SCAN)
	Forward selection for an additional QTL (4D-SCAN)
	Forward selection for an additional QTL and interaction effects (5D-SCAN)

	Optimization methods for the inner problem
	The active set method
	The primal-dual interior point method
	Computation of the Hessian of the log-likelihood

	Numerical results
	Summary
	Numerical algorithms for evaluating derivatives of the log-likelihood
	A model with polygenic effects

	References


